Mainframes (often colloquially referred to as Big Iron) are computers used mainly by large organizations for critical applications, typically bulk data processing such as census, industry and consumer statistics, ERP, and financial transaction processing.
The term probably originated from the early mainframes, as they were housed in enormous, room-sized metal boxes or frames. Later the term was used to distinguish high-end commercial machines from less powerful units which were often contained in smaller packages.
Today in practice, the term usually refers to computers compatible with the IBM System/360 line, first introduced in 1965. (IBM System z10 is IBM's latest incarnation.) Otherwise, systems with similar functionality but not based on the IBM System/360 are referred to as "servers." However, "server" and "mainframe" are not synonymous (see client-server).
Some non-System/360-compatible systems derived from or compatible with older (pre-Web) server technology may also be considered mainframes. These include the Burroughs large systems, the UNIVAC 1100/2200 series systems, and the pre-System/360 IBM 700/7000 series. Most large-scale computer system architectures were firmly established in the 1960s and most large computers were based on architecture established during that era up until the advent of Web servers in the 1990s. (Interestingly, the first Web server running anywhere outside Switzerland ran on an IBM mainframe at Stanford University as early as 1990. See History of the World Wide Web for details.)
There were several minicomputer operating systems and architectures that arose in the 1970s and 1980s, but minicomputers are generally not considered mainframes. (UNIX arose as a minicomputer operating system; Unix has scaled up over the years to acquire some mainframe characteristics.)
Many defining characteristics of "mainframe" were established in the 1960s, but those characteristics continue to expand and evolve to the present day.
Modern mainframe computers have abilities not so much defined by their single task computational speed (flops or clock rate) as by their redundant internal engineering and resulting high reliability and security, extensive input-output facilities, strict backward compatibility for older software, and high utilization rates to support massive throughput. These machines often run for years without interruption, with repairs and even software and hardware upgrades taking place during normal operation. More recently, there are several IBM mainframe installations that have delivered over a decade of continuous business service as of 2007, with upgrades not interrupting service. Mainframes are defined by high availability, one of the main reasons for their longevity, as they are used in applications where downtime would be costly or catastrophic. The term Reliability, Availability and Serviceability (RAS) is a defining characteristic of mainframe computers.
In the 1960s, most mainframes had no interactive interface. They accepted sets of punch cards, paper tape, and/or magnetic tape and operated solely in batch mode to support back office functions, such as customer billing. Teletype devices were also common, at least for system operators. By the early 1970s, many mainframes acquired interactive user interfaces and operated as timesharing computers, supporting hundreds or thousands of users simultaneously along with batch processing. Users gained access through specialized terminals or, later, from personal computers equipped with terminal emulation software. Many mainframes supported graphical terminals (and terminal emulation) by the 1980s (if not earlier). Nowadays most mainframes have partially or entirely phased out classic user terminal access in favor of Web user interfaces.
Historically mainframes acquired their name in part because of their substantial size and requirements for specialized HVAC and electrical power. Those requirements ended by the mid-1990s, with CMOS mainframe designs replacing the older bipolar technology. In fact, in a major reversal, IBM touts the mainframe's ability to reduce data center energy costs for power and cooling and reduced physical space requirements compared to server farms.
Nearly all mainframes have the ability to run (or host) multiple operating systems and thereby operate not as a single computer but as a number of virtual machines. In this role, a single mainframe can replace dozens or even hundreds of smaller servers, reducing management and administrative costs while providing greatly improved scalability and reliability.
Mainframes can add or hot swap system capacity non disruptively and granularly. Modern mainframes, notably the IBM zSeries and System z9 servers, offer three levels of virtualization: logical partitions (LPARs, via the PR/SM facility), virtual machines (via the z/VM operating system), and through its operating systems (notably z/OS with its key-protected address spaces and sophisticated goal-oriented workload scheduling, but also Linux and Java). This virtualization is so thorough, so well established, and so reliable that most IBM mainframe customers run no more than two machines: one in their primary data center, and one in their backup data center—fully active, partially active, or on standby—in case there is a catastrophe affecting the first building. All test, development, training, and production workload for all applications and all databases can run on a single machine, except for extremely large demands where the capacity of one machine might be limiting. Such a two mainframe installation can support continuous business service, avoiding both planned and unplanned outages.
Mainframes are designed to handle very high volume input and output (I/O) and emphasize throughput computing. Since the mid-1960's, mainframe designs have included several subsidiary computers (called channels or peripheral processors) which manage the I/O devices, leaving the CPU free to deal only with high-speed memory. It is common in mainframe shops to deal with massive databases and files. Giga-record or tera-record files are not unusual.[citation needed] Compared to a typical PC, mainframes commonly have hundreds to thousands of times as much data storage online, and can access it much faster.
Mainframe return on investment (ROI), like any other computing platform, is dependent on its ability to scale, support mixed workloads, reduce labor costs, deliver uninterrupted service for critical business applications, and several other risk-adjusted cost factors. Some argue that the modern mainframe is not cost-effective. Hewlett-Packard and Dell unsurprisingly take that view at least at times, and so do a few independent analysts. Sun Microsystems used to take that view but, beginning in mid-2007, started promoting its new partnership with IBM, including probable support for the company's OpenSolaris operating system running on IBM mainframes. The general consensus (held by Gartner and other independent analysts) is that the modern mainframe often has unique value and superior cost-effectiveness, especially for large scale enterprise computing. In fact, Hewlett-Packard also continues to manufacture its own mainframe (arguably), the NonStop system originally created by Tandem. Logical partitioning is now found in many UNIX-based servers, and many vendors are promoting virtualization technologies, in many ways validating the mainframe's design accomplishments.
Mainframes also have unique execution integrity characteristics for fault tolerant computing. System z9 servers execute each instruction twice, compare results, and shift workloads "in flight" to functioning processors, including spares, without any impact to applications or users. This feature, also found in HP's NonStop systems, is known as lock-stepping, because both processors take their "steps" (i.e. instructions) together. Not all applications absolutely need the assured integrity that these systems provide, but many do, such as financial transaction processing.
Despite these differences, the IBM mainframe, in particular, is still a general purpose business computer in terms of its support for a wide variety of popular operating systems, middleware, and applications.
As of early 2006, IBM mainframes dominate the mainframe market at well over 90% market share. Unisys manufactures ClearPath mainframes, based on earlier Sperry and Burroughs product lines. Hitachi co-developed the zSeries z800 with IBM to share expenses. Hewlett-Packard sells its unique NonStop systems, which it acquired with Tandem Computers. Groupe Bull's DPS, Fujitsu-Siemens BS2000, and Fujitsu-ICL VME mainframes are still available in Europe. Fujitsu, Hitachi, and NEC (the "JCMs") still maintain nominal mainframe hardware businesses in their home Japanese market.
The amount of vendor investment in mainframe development varies with marketshare. Unisys, HP, Groupe Bull, Fujitsu, Hitachi, and NEC now rely primarily on commodity Intel CPUs rather than custom processors in order to reduce development expenses, and they have also cut back their mainframe software development. In contrast, IBM has its own large research and development organization designing new, homegrown CPUs, including mainframe processors, and IBM is rapidly expanding its software business, including its mainframe software portfolio, to seek additional profits.
Platform Solutions Inc., which was spun off former alternative mainframe vendor Amdahl Corp. in January 1999, markets Intel Itanium 2 processor-based servers equipped with specialized just-in-time emulation firmware for IBM System z compatibility purposes. PSI and IBM are engaged in a series of lawsuits. IBM alleges that PSI violated its patents and refuses to license its software on PSI systems, while PSI alleges that IBM is violating anti-trust laws.
Several manufacturers produced mainframe computers from the late 1950s through the 1970s. The group of manufacturers was first known as "IBM and the Seven Dwarfs": IBM, Burroughs, UNIVAC, NCR, Control Data, Honeywell, General Electric and RCA. Later, shrinking, it was referred to as IBM and the BUNCH. IBM's dominance grew out of their 700/7000 series and, later, the development of the 360 series mainframes. The latter architecture has continued to evolve into their current zSeries/z9 mainframes which, along with the then Burroughs and now Unisys MCP-based mainframes, are among the few mainframe architectures still extant that can trace their roots to this early period. That said, while they can still run 24-bit System/360 code, the 64-bit zSeries and System z9 CMOS servers have nothing physically in common with the older systems. Notable manufacturers outside the USA were Siemens and Telefunken in Germany, ICL in the United Kingdom, and Fujitsu, Hitachi, Oki, and NEC in Japan. The Soviet Union and Warsaw Pact countries manufactured close copies of IBM mainframes during the Cold War; the Strela is an example of an independently designed Soviet computer.
Shrinking demand and tough competition caused a shakeout in the market in the early 1980s — RCA sold out to UNIVAC and GE also left; Honeywell was bought out by Bull; UNIVAC became a division of Sperry, which later merged with Burroughs to form Unisys Corporation in 1986. In 1991, AT&T briefly owned NCR. During the same period, companies found that servers based on microcomputer designs could be deployed at a fraction of the acquisition price and offer local users much greater control over their own systems given the IT policies and practices at that time. Terminals used for interacting with mainframe systems were gradually replaced by personal computers. Consequently, demand plummeted and new mainframe installations were restricted mainly to financial services and government. In the early 1990s, there was a consensus among industry analysts that the mainframe was a dying market as mainframe platforms were increasingly replaced by personal computer networks.
That trend started to turn around in the late 1990s as corporations found new uses for their existing mainframes and as the price of data networking collapsed in most parts of the world. The growth of e-business also dramatically increased the number of back-end transactions processed by mainframe software as well as the size and throughput of databases. Another factor currently increasing mainframe use is the development of the Linux operating system, which can run on many mainframe systems, typically in virtual machines. Linux allows users to take advantage of open source software combined with mainframe hardware RAS. Rapid expansion and development in emerging markets, particularly China, is also spurring major mainframe investments to solve exceptionally difficult computing problems, e.g. providing unified, extremely high volume online transaction processing databases for 1 billion consumers across multiple industries (banking, insurance, credit reporting, government services, etc.)
The term probably originated from the early mainframes, as they were housed in enormous, room-sized metal boxes or frames. Later the term was used to distinguish high-end commercial machines from less powerful units which were often contained in smaller packages.
Today in practice, the term usually refers to computers compatible with the IBM System/360 line, first introduced in 1965. (IBM System z10 is IBM's latest incarnation.) Otherwise, systems with similar functionality but not based on the IBM System/360 are referred to as "servers." However, "server" and "mainframe" are not synonymous (see client-server).
Some non-System/360-compatible systems derived from or compatible with older (pre-Web) server technology may also be considered mainframes. These include the Burroughs large systems, the UNIVAC 1100/2200 series systems, and the pre-System/360 IBM 700/7000 series. Most large-scale computer system architectures were firmly established in the 1960s and most large computers were based on architecture established during that era up until the advent of Web servers in the 1990s. (Interestingly, the first Web server running anywhere outside Switzerland ran on an IBM mainframe at Stanford University as early as 1990. See History of the World Wide Web for details.)
There were several minicomputer operating systems and architectures that arose in the 1970s and 1980s, but minicomputers are generally not considered mainframes. (UNIX arose as a minicomputer operating system; Unix has scaled up over the years to acquire some mainframe characteristics.)
Many defining characteristics of "mainframe" were established in the 1960s, but those characteristics continue to expand and evolve to the present day.
Modern mainframe computers have abilities not so much defined by their single task computational speed (flops or clock rate) as by their redundant internal engineering and resulting high reliability and security, extensive input-output facilities, strict backward compatibility for older software, and high utilization rates to support massive throughput. These machines often run for years without interruption, with repairs and even software and hardware upgrades taking place during normal operation. More recently, there are several IBM mainframe installations that have delivered over a decade of continuous business service as of 2007, with upgrades not interrupting service. Mainframes are defined by high availability, one of the main reasons for their longevity, as they are used in applications where downtime would be costly or catastrophic. The term Reliability, Availability and Serviceability (RAS) is a defining characteristic of mainframe computers.
In the 1960s, most mainframes had no interactive interface. They accepted sets of punch cards, paper tape, and/or magnetic tape and operated solely in batch mode to support back office functions, such as customer billing. Teletype devices were also common, at least for system operators. By the early 1970s, many mainframes acquired interactive user interfaces and operated as timesharing computers, supporting hundreds or thousands of users simultaneously along with batch processing. Users gained access through specialized terminals or, later, from personal computers equipped with terminal emulation software. Many mainframes supported graphical terminals (and terminal emulation) by the 1980s (if not earlier). Nowadays most mainframes have partially or entirely phased out classic user terminal access in favor of Web user interfaces.
Historically mainframes acquired their name in part because of their substantial size and requirements for specialized HVAC and electrical power. Those requirements ended by the mid-1990s, with CMOS mainframe designs replacing the older bipolar technology. In fact, in a major reversal, IBM touts the mainframe's ability to reduce data center energy costs for power and cooling and reduced physical space requirements compared to server farms.
Nearly all mainframes have the ability to run (or host) multiple operating systems and thereby operate not as a single computer but as a number of virtual machines. In this role, a single mainframe can replace dozens or even hundreds of smaller servers, reducing management and administrative costs while providing greatly improved scalability and reliability.
Mainframes can add or hot swap system capacity non disruptively and granularly. Modern mainframes, notably the IBM zSeries and System z9 servers, offer three levels of virtualization: logical partitions (LPARs, via the PR/SM facility), virtual machines (via the z/VM operating system), and through its operating systems (notably z/OS with its key-protected address spaces and sophisticated goal-oriented workload scheduling, but also Linux and Java). This virtualization is so thorough, so well established, and so reliable that most IBM mainframe customers run no more than two machines: one in their primary data center, and one in their backup data center—fully active, partially active, or on standby—in case there is a catastrophe affecting the first building. All test, development, training, and production workload for all applications and all databases can run on a single machine, except for extremely large demands where the capacity of one machine might be limiting. Such a two mainframe installation can support continuous business service, avoiding both planned and unplanned outages.
Mainframes are designed to handle very high volume input and output (I/O) and emphasize throughput computing. Since the mid-1960's, mainframe designs have included several subsidiary computers (called channels or peripheral processors) which manage the I/O devices, leaving the CPU free to deal only with high-speed memory. It is common in mainframe shops to deal with massive databases and files. Giga-record or tera-record files are not unusual.[citation needed] Compared to a typical PC, mainframes commonly have hundreds to thousands of times as much data storage online, and can access it much faster.
Mainframe return on investment (ROI), like any other computing platform, is dependent on its ability to scale, support mixed workloads, reduce labor costs, deliver uninterrupted service for critical business applications, and several other risk-adjusted cost factors. Some argue that the modern mainframe is not cost-effective. Hewlett-Packard and Dell unsurprisingly take that view at least at times, and so do a few independent analysts. Sun Microsystems used to take that view but, beginning in mid-2007, started promoting its new partnership with IBM, including probable support for the company's OpenSolaris operating system running on IBM mainframes. The general consensus (held by Gartner and other independent analysts) is that the modern mainframe often has unique value and superior cost-effectiveness, especially for large scale enterprise computing. In fact, Hewlett-Packard also continues to manufacture its own mainframe (arguably), the NonStop system originally created by Tandem. Logical partitioning is now found in many UNIX-based servers, and many vendors are promoting virtualization technologies, in many ways validating the mainframe's design accomplishments.
Mainframes also have unique execution integrity characteristics for fault tolerant computing. System z9 servers execute each instruction twice, compare results, and shift workloads "in flight" to functioning processors, including spares, without any impact to applications or users. This feature, also found in HP's NonStop systems, is known as lock-stepping, because both processors take their "steps" (i.e. instructions) together. Not all applications absolutely need the assured integrity that these systems provide, but many do, such as financial transaction processing.
Despite these differences, the IBM mainframe, in particular, is still a general purpose business computer in terms of its support for a wide variety of popular operating systems, middleware, and applications.
As of early 2006, IBM mainframes dominate the mainframe market at well over 90% market share. Unisys manufactures ClearPath mainframes, based on earlier Sperry and Burroughs product lines. Hitachi co-developed the zSeries z800 with IBM to share expenses. Hewlett-Packard sells its unique NonStop systems, which it acquired with Tandem Computers. Groupe Bull's DPS, Fujitsu-Siemens BS2000, and Fujitsu-ICL VME mainframes are still available in Europe. Fujitsu, Hitachi, and NEC (the "JCMs") still maintain nominal mainframe hardware businesses in their home Japanese market.
The amount of vendor investment in mainframe development varies with marketshare. Unisys, HP, Groupe Bull, Fujitsu, Hitachi, and NEC now rely primarily on commodity Intel CPUs rather than custom processors in order to reduce development expenses, and they have also cut back their mainframe software development. In contrast, IBM has its own large research and development organization designing new, homegrown CPUs, including mainframe processors, and IBM is rapidly expanding its software business, including its mainframe software portfolio, to seek additional profits.
Platform Solutions Inc., which was spun off former alternative mainframe vendor Amdahl Corp. in January 1999, markets Intel Itanium 2 processor-based servers equipped with specialized just-in-time emulation firmware for IBM System z compatibility purposes. PSI and IBM are engaged in a series of lawsuits. IBM alleges that PSI violated its patents and refuses to license its software on PSI systems, while PSI alleges that IBM is violating anti-trust laws.
Several manufacturers produced mainframe computers from the late 1950s through the 1970s. The group of manufacturers was first known as "IBM and the Seven Dwarfs": IBM, Burroughs, UNIVAC, NCR, Control Data, Honeywell, General Electric and RCA. Later, shrinking, it was referred to as IBM and the BUNCH. IBM's dominance grew out of their 700/7000 series and, later, the development of the 360 series mainframes. The latter architecture has continued to evolve into their current zSeries/z9 mainframes which, along with the then Burroughs and now Unisys MCP-based mainframes, are among the few mainframe architectures still extant that can trace their roots to this early period. That said, while they can still run 24-bit System/360 code, the 64-bit zSeries and System z9 CMOS servers have nothing physically in common with the older systems. Notable manufacturers outside the USA were Siemens and Telefunken in Germany, ICL in the United Kingdom, and Fujitsu, Hitachi, Oki, and NEC in Japan. The Soviet Union and Warsaw Pact countries manufactured close copies of IBM mainframes during the Cold War; the Strela is an example of an independently designed Soviet computer.
Shrinking demand and tough competition caused a shakeout in the market in the early 1980s — RCA sold out to UNIVAC and GE also left; Honeywell was bought out by Bull; UNIVAC became a division of Sperry, which later merged with Burroughs to form Unisys Corporation in 1986. In 1991, AT&T briefly owned NCR. During the same period, companies found that servers based on microcomputer designs could be deployed at a fraction of the acquisition price and offer local users much greater control over their own systems given the IT policies and practices at that time. Terminals used for interacting with mainframe systems were gradually replaced by personal computers. Consequently, demand plummeted and new mainframe installations were restricted mainly to financial services and government. In the early 1990s, there was a consensus among industry analysts that the mainframe was a dying market as mainframe platforms were increasingly replaced by personal computer networks.
That trend started to turn around in the late 1990s as corporations found new uses for their existing mainframes and as the price of data networking collapsed in most parts of the world. The growth of e-business also dramatically increased the number of back-end transactions processed by mainframe software as well as the size and throughput of databases. Another factor currently increasing mainframe use is the development of the Linux operating system, which can run on many mainframe systems, typically in virtual machines. Linux allows users to take advantage of open source software combined with mainframe hardware RAS. Rapid expansion and development in emerging markets, particularly China, is also spurring major mainframe investments to solve exceptionally difficult computing problems, e.g. providing unified, extremely high volume online transaction processing databases for 1 billion consumers across multiple industries (banking, insurance, credit reporting, government services, etc.)
1 comment:
great article.
Post a Comment